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Abstract 

A toy model of inBation with a first order phase transition built on a non- 

minimal generalization of quadratic gravity effectively implements a two field 

inflation and copiously spurs bubbles 6ejonz the end of the slow roll. In par- 

ticular, the phase transition may be brought to completion quickly enough to 

leave an observable signature at the large scales. We identify analytically and 

numerically the parameter space region capable of fitting the observed galaxy 

correlation function, while passing the microwave background constraints. 

Thus, astronomical observations can yield information upon the parameters 

of fundamental physics. 
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I. INTRODUCTION. 

Inflation with a first order phase transition [l] (for shortness, First Order Inflation, FOI) 
is now reviving the appeal of Guth’s Old Inflation [2], accelerated expansion and bubble 
production in one and the same process. The bubbles produced during the phase transition 
may be the deus ex machina for the formation of Large Scale Structure (LSS) [3] (41, since 
they can provide the large scale power that CDM models seem to lack. In particular, a 
bubble geometry can reproduce observed features in the galaxy distribution such as the 
Galaxy Correlation Function (GCF) [5] and the higher-order moments [6]. However, a 
warning must be issued at once [7] for the deep “scars” big bubbles leave in the Cosmic 
Microwave Background (CMB) - a real “challenge to model builders” -. Indeed, it has 
been shown [7] [8] that the existing variants of FOI do not produce an astrophysically useful 
spectrum of bubbles, because, if the bubbles are to satisfy the CMB constraints, then they 
cannot have an impact ‘on the LSS. In this paper we propose a toy model of FOI which 
overcomes this difficulty. 

Models of FOI were motivated by the graceful exit difficulty 191. In fact, since the phase 
transition is completed approximately if and when (11 

Q=g$ 0) 

first grows to order unity (one bubble produced per horizon four volume), where I is the 
tunneling rate defined later and H = iL/a = Cr is the Hubble parameter of a spatially flat 
Friedmann-Robertson-Walker (FRW) metric of scale factor a( t ) = a( 0) exp a(t), all one has 
to do is to increase the numerator or to decrease the denominator (or both) in Q. Extended 
Inflation (EI) [lo] which slows down the expansion of the background to a power law by 
changing the underlying gravity to Jordan-Brans-Dicke, with its difficulties and remedies 
[ll], remains a paradigm of the latter option. The other way out, by making I increase 
with the expansion, is achieved by two field inflation [12], where one field does the quantum 
tunneling and the other does the slow rolling under an ad hoc chosen potential. In this 
paper, we will implement this very mechanism of a time-dependent I’ by assuming instead 
that the underlying gravity is not Einstein, but carries also the quadratic corrections in the 
Ricci curvature R to the Lagrangian, suggested by quantum and superstring [13] theories 
and appropriate to the early Universe (see however Ref. [ 141). One has then a Fourth Order 
Gravity (FOG): this theory has many attractive features among which the existence of non- 
singular solutions and the fact that canonical General Relativity (CR) is its low energy limit. 
The slow rolling field is now the Starobinsky [l5] scalaron, the potential of which, in the 
conformal frame, is not chosen ad hoc, but dictated by the field equations. 

The presentation of our model is organized as follows. First, given that our matter 
content is in the form of a scalar field ti, we choose a coupling of II, to R2 that carves two 
channels of different energy in the conformal potential. This allows for bubble production 
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in a first stage, and for pure slow-rolling subsequently. As a consequence, we show that 
under FOG the phase transition is indeed quickly completed yielding a signature at a well 
defined, large and tunable scale in the present Universe. Second, we evaluate analytically 
and numerically the tunneling rite in the slow-rolling, thin-wall limit, applying the canonical 
technique of Coleman [16]. Third, exploiting the relation between the instant of nucleation 
of a bubble and its comoving size, we convert the tunneling rate to a bubble spectrum, 
and approximate the latter as a power law, so to focus on two parameters only. Finally, 
we determine the values of the parameters which pass the CMB constraints on large and 
small scales and fit the GCF, following the results of Ref. [5] and, for such values of the 
parameters, we display numerical bubble spectra. 

Let us observe that the bubble physical size expands overcomovingly [17] as t4j5 (i.e., the 
comoving radius goes as a *j5) in the matter dominated era, so that the volume contained 
inside bubbles was much smaller in the past. A volume fraction of, say, 50% today, necessary 
to produce significant structure, was less than 1% at decoupling, and even smaller at the 
equivalence. It is this relatively small perturbation that allows the microwave tests to be 
passed. For the same reason, it is also very likely that other cosmological constraints, such 
as the yields of an inhomogeneous nucleosynthesis (see e.g. Ref. [18]), the primordial black 
holes production (e.g. [19]), the gravitational wave generation (e.g. [20]), leave a consistent 
window in the parameter space of our scenario. 

The model presented here bears a strong resemblance to the “scale-invariant” EI, [21], 

and with our work of Ref. [22], with regard to the tunability of the epoch of bubble pro- 
duction. In neither case, however, was the spectrum of tunneling induced inhomogeneities 
calculated and confronted with astrophysical observations. We earlier introduced the cou- 
pling to the R* term [23] to solve a fine-tuning problem in a doubly inflationary scenario 

II. A NEW BUBBLE PRODUCTION MECHANISM. 

Let us first briefly review why the primordial bubbles in the current models of EI cannot 
trigger structure formation. If I’ is the bubble nucleation rate and VFV is the fraction of 
volume in false vacuum at the time t, the number of bubbles nucleated during the interval 
dt is 

dns 
dt = Iv,, . (2) 

Since large bubbles, the ones of interest here, are nucleated far before the phase transition 
ends, we may assume that almost all of the Universe still sits in the false vacuum state, 
VFV = a3. A bubble of comoving size L will cross out the horizon when L x (aH)-‘. 
In what follows, the notation L refers to the comoving size of bubbles, while the notation 
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R is left to indicate the actual present size of bubbles after the overcomoving expansion. 
Let us remark that we will express all lengths as comoving lengths so that their physical 
and comoving size coincides at the present time; when we say that a bubble was g times 
smaller at decoupling we refer to its comoving size: its physical size was clearly gtdcc times 
smaller. Assuming a generic power law accelerated expansion a w t” with n > 1, one has 
dL/dt w -l/a so that Eq. (2) becomes 

dne - N -rL-4-+, 
dL 

to first order in l/n. Assuming I’ slowly varying with time, Eq. (3) can be integrated to 
give the EI power spectrum 

w3 = (Lmo&Y, p=3+4/n, (4) 

where the normalization constant L,,, can be explicitely calculated in terms of the nucle- 
ation rate, which in turn depends on the potential parameters of the specific model. However, 
the very condition that the phase transition be completed at a given time t, requires that 
by that time the volume contained in all the bubbles previously nucleated be of the order 
of the horizon volume. To an order-of-unity factor this condition is 

where Lh = 2H,7’ = 6000h”Mpc, and L, is the size of the bubbles nucleated at the phase 
transition end. Let NOT = log( Lh/Lc) > 1 be the duration in e-foldings of the phase 
transition. This fixes L,,, as 

L mot = Lh exp [(a - P)NT/PI . 

With this normalization, Eq. (4) provides the EI bubble spectrum (neglecting the overco- 
moving expansion). In all the current models of EI one has N,DT w 60: in fact, the phase 
transition ends when the inflation ends. The reason why the EI spectrum does not work 
for making reasonable structure is that with NOT w 60 the scale L,,, is vanishingly small 
for p even slightly larger than 3. A detailed comparison with the observational constraints 
shows indeed that a spectrum with L,,, as in Eq. (6) is far outside the acceptable range 
of parameters ( (81; see also below). However, Eq. (6) also indicates the way out: making 
NOT a free parameter we may hope to generate some acceptable spectrum. For N,DT w 10, 
in fact, we have L,,, of the order of the large scale astrophysical structures for reasonable 
values of the spectral index p. To obtain NOT smaller than its canonical value 60, all we 
need to do is to produce a phase transition shorter than the inflation itself. This is provided 
in a fairly simple way by our model. 

Our physics (in Planck units) is entirely contained in the Lagrangian density t, sum of 
a gravity contribution, 
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C 
R* 

grov = -R + 6M*W($9 ’ (7) 

where R is the Ricci scalar (not 10 be confused with the bubble size), and a canonical matter 
contribution, 

C mot = 16~ ;$;,# - V(e)) . 
( (8) 

The former generalizes the canonical LCOMv of quadratic gravity [15] with the inclusion of the 
scalar coupling IV($) in the quadratic term. With this generalization, the mass M of the 
Starobinsky scalaron is replaced by a reduced mass 

Mef/(ti> = MW”*(+). (9) 

For M and Mc,j there are i) upper limits, of the order of 10w5, from the lack of large scale 
anisotropy in the cosmic microwave background [15] [25] and ii) lower limits [26] from the 
Yukawa corrections on scales smaller than MC>) or M-l to the Newtonian potential of a 
point mass, neither of which is a problem. The Action 

/ $XJ-S(Lgrov + crnol) 7 

can be recast in a (maybe more familiar) Brans-Dicke form plus a quadratic correction 
performing the coordinate transformation x’p = IJV-‘/~X~ and the field redefinition $J’ = 
W1j4$. However, in view of the “roadblock” [14] canonical couplings cause to a satisfactory 
inflation, it may be worth to trade a variable G for a harmlessly variable MeI, 

* For our FRW metric the Ricci scalar R = -6(H + 2H*) can be given by an approximate 
solution [15], under the slow roll (]fil << H@]) assumption and for the vacuum case: 
the latter can be immediately generalized to the present case for $J =const. By taking 
a z log( alai,), one finds 

R - Ri, 
a, = 4M$,, ’ 

where the subscript “in” refers to the beginning of the last NT useful e-foldings; whenever 
necessary for the actual computations we set NT = 60, without prejudice to generality. 

The theory (7) can be conformally transformed into a canonical GR [27] with the new 
metric 

i&p = 
dL: 
I I 

R 
e%7,p, fP= z =1-3M2. 

4s 
(12) 

In the slow-rolling approximation useful relations link w, H and the number N = NT - o of 
e-foldings to the end of inflation: 
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(13) 

Correspondingly, Hi, = A&~~( Nq-/3)‘/*. From the Lagrangian (7) we obtain then Einstein 
gravity with two scalar fields, $J and w, coupled by a potential given by: 

W/b) = e -Iw 
[ 
VW + gw(w -e%)* . 1 04) 

In the resealed Lagrangian, the dimensionless field w acquires a canonical (up to a numeric 
factor) kinetic term, while the kinetic term for tl, is multiplyed by the factor e-&. The 
expression (14) shows the different roles of the two potentials: W(+) rules the early FOG 
evolution when w and $J are large while V(e) comes in later as w + 0 and GR is recovered. 
We need to impose two conditions on W(q) and V(e): that a phase transition be possible, 
and that at some given instant, while the expansion is still infiationaq, the barrier between 
vacuum states vanishes, so that the phase transition comes to an end. The minimal ansatt 

is then a quartic for W( @) and a quadratic for V(e): 

w(q) = 1+ $p(@ - 1cld2 9 V(G) = +. (15) 

This carves in (14) two parallel channels of different height, separated by a peak (PK) at 
+!JPK = @o/2. The degeneracy of W(e) in tl, = 0 and II, = $+-, is indeed removed by tf( ti); 
the true vacuum (TV) channel remains at hv = 0, while the false vacuum (FV) channel is 
slightly displaced from $0. If &,d, see below, is where the barrier between the channels ends, 
the inequality w > Wend must be satisfied during bubble nucleation; furthermore, since we 
work in the thin wall approximation, UfV << UPK, a slightly stronger inequality w > W&w 
is required, where 2wlhw k: 2w,,,j k: ln( I + p) and 

W-3) 

is dimensionless. In practice, we work with p < 1 and, during the phase transition, w x 2. 
Two comments are now in order: i) given that there is one absolute minimum at w = $J = 0, 
the final true vacuum, the ansatzof (15) may still generate an unwanted secondary minimum 
along the FV channel; care is taken to avoid this occurrence; ii) the classical motion is not 
a double inflation in the usual sense, one slow roll for each field, but a sequence of two slow 
rolls for the same field, w, down the FV channel first and then, after the end of the phase 
transition, down the TV channel. 

We must now tackle Q. Although our gravity is complex, basic physics [IS] still applies 
in the conformal frame: hence, 

F = M4exp-SE, (17) 
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where M is of the order of the energy of the spontaneous symmetry breaking and SE is the 
Euclidean action: 

SE = /JTjd’x (~e-bt+b,t/Y + W(d,w)) (18) 

(neglecting the kinetic energy of w). To obtain a canonical kinetic term, we rescale the 
coordinates [l] as xp = eWuP , so that, in the new coordinates 

SE = e-&/G&i ($l+$” +U) = e-%%(tL), (19) 

where finally 5~ is canonical. To evaluate SE, we observe that the potential (14) is in 
the form employed by Coleman in Ref. [16], i.e. a quartic degenerate potential to which 
a symmetry-breaking term is added, except that the coefficients are w-dependent. Due to 
the slow-rolling approximation, the w-dependence transforms in a weak time-dependence, 
that we neglect. In particular, in the large w approximation in which we will work, Eq.( 14) 
simplifies considerably and only the symmetry breaking term keeps the w-dependence: by 
writing 

u(+,w) X AW($) + V($)es4”, (20) 

where 
A 3M2 

=32x’ 
we may express the Coleman result as 

(21) 

in the thin wall limit and to the lowest order in the smallness parameter, the energy density 
difference 6 = ( UFV - &V) = m*#2exp( -4~). In our model, this gives (gravitational 
corrections being small): 

SEXEe8”, (22) 

where 

(23) 

The result, essentially due to the scalaron physics and not to the specific coupling W(Q), 

can be recast by use of ( 13) in another useful way: 

SE-(:)‘, E-(&)4, (24) 
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where the subscript “1” marks the scale where SE = 1. Since spinodal decomposition [7] 
occurs for SE < 1, requiring that N > Nr( >> 1) gives us confidence that we are dealing 
with real bubbles and not with generic perturbations. Consistently, the density contrast 
of the bubble-like inhomogeneities is ]bp/p] k: (UPK - UTV)/UPK x p’* for 0 > 1 and 
z 1 for p < 1; therefore, the very condition that we are in the thin wall limit, equivalent 
to D < 1, also guarantees that the bubbles are strong underdensities. While the smallest 
bubbles will rapidly thermalize through collisions and matter infall, the biggest bubbles will 
remain essentially void until the present, driving early structure formation. Turning now 
back to the physical frame, after taking into account the conformal resealing of four volume 
[l) r = e&F, and expressing H by the slow roll approximation (13), we have finally 

Q(N) = exp N’ii,N4, (2)’ = -!- 
64x exp Nl 

(NO)4 (25) 

where we have introduced a new parameter NO to mark the end of the phase transition 
(Q( No) = l), and th e b eginning of the pure slow-rolling stage. It is the freedom to choose 
No that will allow for a successful production of astrophysically acceptable bubbles. An 
estimate of NO is equivalent to an estimate of M, another instructive example of the deep 
links between fundamental physics and LSS provided by inflation. Obviously, the constraint 
lZr, > Ni must be satisfied. To make contact with the astronomical intuition, the comoving 
scales of interest L(N) are first read as a function of the N that applies when they cross out 
the horizon: 

H(N)L(N) = Hi,Lh exp(N - NT). (26) 

Subsequently, they are overcomovingly [17] expanded into bubble radii R(N) = f( z)L( N), 
where f(t) = z1j5 for the comoving scales > 13h’ 1 Mpc that reenter the horizon after the 
equivalence redshift zcp = 24000, and f(z) = .$’ x 7.45 for all the smaller scales. To fix the 
ideas, if NT = 60 and Lh = 6000h” Mpc is the present horizon, then N = 57 corresponds 
to 300h-’ Mpc, and N = 50 corresponds to a fraction of a Mpc. If the tunneling process 
keeps going for N + 0, the situation will be similar to that of EI where there are too many 
small bubbles (nucleated at the end of inflation) and too few big ones. 

III. RESULTS AND DISCUSSION. 

The bubble spectrum can be evaluated by the knowledge of the rate at which bubbles 
are generated [9], as previously done for the EI. Since we want quantitative results, we keep 
now all the relevant factors. The number of bubbles nucleated in the interval dt is 

dne -= 
dt (27) 



where Vi, is the horizon volume at N = NT, V,, = 47r/3Hfn, and where the exponential 
factor accounts for the fraction of space which remains in the false vacuum. For exact 
results we must resort to the numerical evaluation of the rate equation along with the 
numerical integration of the field equations and of the generalized Klein-Gordon equation 
for $J. However one relevant feature of the solution can be guessed at analytically. We 
have shown in Eq. (4) that the bubble spectrum in EI is provided by a similar power law. 
It turns out that in our case too it is possible to approximate the spectrum with a power 
law around any convenient bubble radius. To do this, we first change variable in Eq. (27) 
from the nucleation epoch t to the scale L in horizon-crossing at t, by use of the relation 
dL/dt = -Hi,Lh/a valid during slow roll. This gives 

dnB/dL = -3Lie’QL-‘, (28) 

where I is the argument of the exponential in (27). We can approximate Q for N ti :1;, as 

Q(N) = Qzexps(N, - N:), (29) 

where Qz = exp[(Nt - N,4)/Nf] and s = 4Nz/Nt. In terms of the bubble comoving size L, 

since L = LheNsNT (assuming H is slowly varying during the slow roll), we obtain 

Q(L) = QWLJ-” 3 (30) 

where L, is the comoving bubble scale enucleated at N,. Substituting (30) in (28) we obtain 

dnBfdL = -3Lie’Q,L:Lw4-“. (31) 

As before, we now approximate e’ to unity, as we consider the tunneling far from the 
completion of the transition (we will later check this against the numerical integration). If 
follows that 

ng = Lw3-’ = ( Lmo=/L)P, (32) 

so that 

P = 3 + s = 3 + 4( N,3/N,4), 

L mot = [3L;Qz L:-3/p] I” . 

(33) 

(34) 

L mar is the normalization of the bubble spectrum in a horizon volume vh = 4xLi/3 and in 
comoving scales. Eq. (34) compares directly to Eq. (6). For rV, close to NO, in fact, we can 
approximate Qz x exp[(p - 3)( NO - N,)]. Then N, disappears from the expression for Lmo, 
and we obtain 

L mot w Lh exp((3 - p)(h - No)/PI 9 (35) 
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where NT-NO is indeed the duration of the phase transition, now a free parameter. However, 
what we need is actually the spectrum of bubbles in a observable volume V, at present, 
including the effect of the overcomoving expansion. We use V, = (500h’1Mpc)3 in order to 
compare with the observational-constraints of Ref. [5]. We need then to multiply L,,, by 
the post-equivalence amplification factor f = zfi5 and by the volume reduction factor .yl/P, 
where r = ‘vI/vh = 1.4 . 10”. Around a scale of, say, R, = 30 Mpc (corresponding to a 
comoving scale L, z 4 Mpc), we determine finally the power law normalization 

R moz = 
*l/5Tl/pLh [E/z (~)~~-3~] 1/P , 

l q 

We underline that the two observables Rm, and p depend only on NO and Ni (for fixed 
N,), while there are four microphysics parameters, @c , X , m , and hf (the fifth, M, being in 
principle derivable from them). We exploit this large freedom to satisfy the constraints on 
the potential mentioned in the previous section. 

We are now in position to compare our bubble spectrum with the EI bubble spectrum 
(4) and with the constraints on the large scale structure and on the CMB. We already 
worked out the constraints on spectra of primordial bubbles in Ref. [5] so we only review 
and update the results here. For as concern the large scale structure, it has since long been 
known [3] that a geometry of bubbles can reproduce several features of the large scale matter 
distribution. We have shown in Ref. [5] ( see also Ref. (61) that the observed GCF is fitted 
by a model of bubbles drawn from a power-law spectrum nB = (R,,,o+/R)P provided 

R,,, /28h-’ Mpc = (~/10)-‘.~. (37) 

For a primordial bubble model to be successful it is then required that the normalization 
of the predicted bubble spectrum be close to Eq. (37). For the CMB constraints, we 
notice that a completely empty bubble of radius L at decoupling produces a Sachs-Wolfe 
distortion on the microwave temperature of AT/T N L*/Lz, if Ld denotes the horizon scale 
at decoupling. In a pixel corresponding to a size of L, > L at decoupling, a further factor of 
L*/Lz smears the signal [8]. Finally, the overcomoving expansion stretches the bubble size 
by a factor g z ~2: x 4. There are two main CMB constraints arising from observational 
upper bounds to such Sachs-Wolfe effect. Full-sky, low-resolution surveys like COBE can 
detect rare big bubbles as cold spots. On the other hand, a large number of small bubbles 
can be detected as Poissonian fluctuations in high resolution, small coverage experiments 
with antenna beam around lo. Assuming a power-law spectrum like (27) both constraints 
can be put in form of restrictions on the two parameters p and R,,, for large p [5]. For the 
radii we are concerned with, the Rees-Sciama effect due to bubbles on the line of sight is a 
minor one [28]. The “large-bubbles” constraint amounts to 

&no, < RI(P) = gL, 
[ Tb;Lf)Lh] “’ , 

(38) 
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where L, = 18h-‘Mpc is the smallest bubble (at decoupling) that can give an observable 
signal (AT/T z 1O’5) in a COBE pixel. The “small-bubbles” constraint gives 

R mar 

2’p 

’ 
(39) 

where ep is the beam angular size (we assume lo) in radians, A x 10” is the observational 
upper bound on AT/T, L1 is the smallest bubble not completely thermal&d at decoupling, 
and L, x 7h-‘Mpc is the last scattering surface thickness. The constraints we use in the 
following are for reasonable values of L1 (see Ref. [5]). 

The main results are contained in Fig. 1 and Fig. 2. In Fig. 1, on the plane (p, R,,,), 
we display as a shaded area the parametric region of cosmological interest, i.e. the models 
which satisfy the CMB constraints (38) and (39), and are close to the curve (37) (and are 
thus able to fit the GCF). Incidentally, the constraint from the black body spectrum [5], 
being much less sharp, is omitted here. It is clear that the EI spectrum (4) (corrected for 
the overcomoving expansion and reduced to V,) is far from the acceptable region. On the 
contrary, it can be seen that the curve R ma=(p) given in Eq. (36) crosses the acceptable 
region for some values of NO and Ni: this shows that our model is capable to produce pairs 

P. Rmaz which pass the CMB tests and have interesting large scale features. It turns out that 
No E (49,51) and p E (6,15) i.e. Ni E (15,21) satisfy all the constraints. As anticipated, a 
phase transition lasting 60 - NO x 10 e-foldings produces a bubble spectrum with interesting 
astrophysical effects on the large scale structure. If, more qualitatively, one imposes to the 
model only the minimal requirement to give some significant structure, for instance that 
50% of the space be contained in bubbles of at least 3 h-l Mpc, then the allowed parameter 
space becomes considerably wider; Fig. 1 shows that EI bubble spectrum (4) does not meet 
even this milder requirement. In Fig. 2 we give the numerical and analytical bubble spectra. 
As in (36) above, the normalization contains the two extra factors r and j. The agreement 
between solid and broken lines is complete as expected on the large scales, i.e. far from the 
turnover. The intermediate case, NO = 50, shows that it is possible to produce bubbles at 
the right time and therefore of the right size. 

To conclude, in this paper we have attempted to build a working model of first order 
inflation with the help of the simplest quadratic corrections to Einstein’s gravity: in order 
to allow for bubble enucleation we. made use of an ad hoc quartic coupling of the scalar field 
to the curvature squared term. We have shown that the advantage of quadratic gravity is 
to allow for a sufficient period of slow roll after the completion of the phase transition. This 
overcomes the difficulty extended inflation has in producing useful bubbles, by providing a 
bubble spectrum capable of having an observable impact on the large scale structure (in 
fact at the level of the observed galaxy correlation function) and, at the same time, of 
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evading the CMB constraints. A clear prediction of models based on primordial bubbles 
is that the currently observed large voids should be effectively empty, with the exception 
of some matter pushed inside by peculiar motions. From an observational point of view, 
however, the situation is complicated by the fact that inflation by itself produces a spectrum 
of ordinary, linear and Gaussian fluctuations with as many underdensities as overdensities. 
The evolution of the former would eventually lead to a population of large, almost spherical 
regions not completely emptied at present. 

Our model is a version of two field inflation where at least one of the two potentials, 
that of the slow rolling field, is built in. Of course, one can design a suitable potential that 
implements the same mechanism in ordinary gravity. 
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Figure Captions. 
Fig. 1. Models in the shaded region satisfy the observational constraints on the 

parameter space (p, Rmat) cl iscussed in the text. We plot i) as a heavy solid line the curve 
given by (37); ii) as a heavy d&hed line (labeled RI) the constraint from COBE isotropy on 
the large scales ( hr loo); iii) as a heavy dashed line (labeled R,) the constraint from CMB 
isotropy on the small scales (m lo); i~j as short-dashed lines the curves R,&p) given by 
(36) for NO = 37,50,52 from left to right; u) R,,,(p) for the original (41 EI model: the 
intersection with the GCF curve is way out of the CMB allowed region; vi) as a light solid 
line the lower boundary of the region where at least 50% of the Universe is filled with bubbles 
larger than 3 h-’ Mpc. 

Fig. 2. Bubble spectra, log( -dnB( R)/dR) , VS. present bubble radius in Mpc: solid 
lines refer to numerical spectra, broken lines to approximated spectra. We display one valid 
model, NO = 50, amidst two invalid ones, NO = 52 (early enucleation and hence too much 
power on the large scales) and NO = 37 (late enucleation and hence too little power on the 
large scales). For NO = 50, the steeper slope is obtained for Ni = 18 (which yields p = 8), 

the milder slope for Ni = 23 (p = 5). 
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